какой она бывает, и что нам это дает / Хабр
Хорошая память — неоспоримое преимущество для студентов и тот навык, который уж точно пригодится в жизни — вне зависимости от того, какими были ваши учебные дисциплины.
Сегодня мы решили открыть серию материалов о том, как прокачать память — начнем с короткого ликбеза: какой бывает память и какие методы запоминания работают наверняка.
Фото jesse orrico — Unsplash
Память 101: от доли секунды до бесконечности
Проще всего описать память как способность некоторое время накапливать, сохранять, воспроизводить знания и навыки. «Некоторое время» может занимать секунды, а может длиться всю жизнь. В зависимости от этого (а также от того, какие участки мозга активны в тот или иной момент) память принято подразделять на сенсорную, кратковременную и долговременную.
Сенсорная — это память, которая активируется всего за доли секунды, она находится вне нашего сознательного контроля и по сути является автоматическим ответом на изменения окружающей среды: мы видим/слышим/ощущаем объект, распознаем его и «достраиваем» окружающую нас обстановку с учетом новой информации. По сути это система, позволяющая нам регистрировать картину, которую воспринимают наши органы чувств. Правда, очень ненадолго — информация в сенсорной памяти хранится буквально полсекунды и меньше.
Кратковременная память «работает» в пределах до нескольких десятков секунд (20-40 секунд). Мы способны воспроизвести информацию, полученную в этом временном отрезке, без необходимости сверяться с первоисточником. Правда, не всю: объем информации, которую может удерживать кратковременная память, ограничен — долгое время считалось, что он вмещает «семь плюс-минус два объекта».
Поводом так считать послужила статья гарвардского психолога-когнитивиста Джорджа Миллера (George Armitage Miller) «Магическое число 7±2», которая вышла в журнале Psychological Review еще в 1956 году. В ней он описывал результаты экспериментов во время своей работы в Bell Laboratories: по его наблюдениям, человек мог хранить в кратковременной памяти от пяти до девяти объектов — будь то последовательность букв, цифр, слова или изображения.
Более сложные последовательности испытуемые запоминали, группируя элементы так, чтобы число групп также находилось в пределах от 5 до 9. Правда, современные исследования дают более скромные результаты — «магическим числом» считается 4±1. Такие оценки приводит, в частности, профессор психологии Нельсон Коуэн (Nelson Cowan) в своей статье 2001 года.
Фото Fredy Jacob — Unsplash
Долговременная память устроена иначе — длительность хранения информации в ней может быть неограниченна, объем намного превышает кратковременную память. При этом если в работе кратковременной памяти заняты временные нейронные связи в области фронтальной и теменной коры мозга, то долговременная память существует за счет устойчивых нейронных связей, распределенных по всем отделам мозга.
Все эти виды памяти не существуют отдельно друг от друга — одну из самых известных моделей взаимосвязи между ними предложили психологи Ричард Аткинсон и Ричард Шиффрин (Richard Atkinson, Richard Shiffrin) в 1968 году.
Вспоминание (целенаправленное или спонтанное) в такой модели — это обратный переход информации из долговременной в кратковременную память.
Другую модель через 4 года предложили психологи-когнитивисты Фергус Крейк и Роберт Локхарт (Fergus I. M. Craik, Robert S. Lockhart). Она основана на идее о том, что длительность хранения информации и то, останется ли она лишь в сенсорной памяти или перейдет в долговременную, зависит от «глубины» обработки. Чем сложнее способ обработки и чем больше времени на него затрачено, тем выше вероятность, что информация запомнится надолго.
Эксплицитная, имплицитная, рабочая — все это тоже про память
Исследования взаимоотношений между типами памяти привели к появлению более сложных классификаций и моделей.
Так, например, долговременную память стали подразделять на эксплицитную (ее также называют осознанной) и имплицитную (неосознанную или скрытую).Эксплицитная память — то, что мы обычно имеем в виду, когда говорим о запоминании. Она в свою очередь подразделяется на эпизодическую (воспоминания о жизни самого человека) и семантическую (память о фактах, понятиях и явлениях) — такое разделение впервые предложил в 1972 году канадский психолог эстонского происхождения Эндель Тульвинг.
Фото studio tdes — Flickr CC BY
Имплицитную память обычно подразделяют на прайминг и процедурную память. Прайминг или фиксирование установки возникает, когда определенный стимул влияет на то, как мы воспринимаем стимул, следующий за ним. Например из-за прайминга особенно смешным может казаться явление misheard lyrics (когда в песнях слышится что-то не то) — узнав новый, нелепый вариант строчки из песни, мы тоже начинаем его слышать. И наоборот — ранее неразборчивая запись становится понятной, если увидеть расшифровку текста.
Что касается процедурной памяти, то ее яркий пример — моторная память. Ваше тело «само знает», как кататься на велосипеде, водить машину или играть в теннис, точно так же музыкант играет знакомое произведение, не заглядывая в ноты и не раздумывая о том, каким должен быть следующий такт. Это — далеко не единственные модели памяти.
Оригинальные варианты предлагали как современники Миллера, Аткинсона и Шиффрина, так и следующие поколения исследователей. Классификаций видов памяти также много больше: например, в отдельный класс выделяют автобиографическую память (что-то среднее между эпизодической и семантической), а помимо кратковременной памяти иногда говорят о памяти рабочей (хотя некоторые ученые, например тот же Коуэн, считают, что рабочая память — это скорее небольшой раздел долговременной памяти, которым человек оперирует в моменте).
Банально, зато надежно: базовые приемы по тренировке памяти
Польза хорошей памяти, конечно же, очевидна. Не только для студентов накануне экзамена — по данным недавнего китайского исследования, тренировка памяти помимо основной своей задачи также помогает регулировать эмоции. Для лучшего удержания объектов в кратковременной памяти чаще всего применяется метод группировки (англ. chunking) — когда объекты в некоей последовательности группируются по смыслу. Это тот самый метод, который лежит в основе «магических чисел» (учитывая современные эксперименты, желательно, чтобы количество итоговых объектов не превышало 4-5). Так, например, телефонный номер 9899802801 гораздо проще запомнить, если разбить его на блоки 98-99-802-801.
С другой стороны, кратковременная память и не должна быть чрезвычайно острой, отправляя буквально всю полученную информацию «в архив». Эти воспоминания недолговечны именно потому, что большая часть окружающих нас явлений не несет ничего принципиально важного: меню в ресторане, список покупок и то, во что вы были сегодня одеты, — явно не те данные, которые действительно важно хранить в памяти годами.
Что же касается долговременной памяти, то базовые принципы и методы ее тренировки — одновременно и самые сложные и трудоемкие. И довольно очевидные.
Фото Tim Gouw — Unsplash
Неоднократное вспоминание. Совет банальный, тем не менее, надежный: именно повторяющиеся попытки вспомнить что-либо позволяют с большой вероятностью «поместить» объект в долгосрочное хранилище. Тут есть пара нюансов. Во-первых, важно правильно выбрать временной промежуток, после которого вы постараетесь вспомнить информацию (не слишком длинный, не слишком короткий — зависит от того, насколько хорошо уже развита ваша память).
Предположим, вы разобрали билет к экзамену и постарались заучить его. Попробуйте повторить билет через несколько минут, через полчаса, через час, два, на следующий день. Это потребует больше времени на один билет, но относительно частое повторение через не слишком длительные промежутки времени поможет лучше закрепить материал.
Во-вторых, важно пытаться вспомнить материал целиком, не заглядывая в ответы при первом же затруднении — даже если вам кажется, что вы не помните вообще ничего. Чем больше вам удастся «выудить» из своей памяти при первой попытке, тем лучше сработает следующая.
Симуляция в условиях, приближенных к реальным
Например, согласно исследованию, навык отбивать мячи оказался лучше развит у тех бейсболистов, которым приходилось принимать разные подачи в непредсказуемом порядке (как в реальной игре), в отличие от тех, кто последовательно тренировался работать с конкретным типом подачи.
Пересказ/записывание своими словами. Этот подход обеспечивает большую глубину обработки информации (если ориентироваться на модель Крейка и Локхарта). В сущности, он заставляет обрабатывать информацию не только семантически (вы оцениваете зависимости между явлениями и их взаимосвязи), но и «с отнесением к себе» (как бы вы назвали это явление? Как вы сами можете объяснить его — не пересказывая слово в слово содержание статьи или билета?).
То и другое с позиции этой гипотезы — уровни глубокой обработки информации, которые обеспечивают более эффективное припоминание.Все это — довольно трудоемкие приемы, хоть и действенные. В следующем материале из серии посмотрим, какие еще подходы работают на развитие памяти, и есть ли среди них лайфхаки, помогающие сэкономить время и тратить на запоминание чуть меньше сил.
Другие материалы из нашего блога на Хабре:
- 10 тематических мероприятий Университета ИТМО (май, июнь и июль)
- Toolbox для исследователей: самоорганизация и визуализация данных
- Подборка книг о том, как учиться, мыслить и принимать эффективные решения
- Как «научиться учиться» — советы, рекомендации и научные исследования
Наши фотоэкскурсии на Хабре:
- Показываем лабораторию «Перспективные наноматериалы и оптоэлектронные устройства»
- Что делают в лаборатории квантовых материалов Университета ИТМО
- Механизированные руки и манипуляторы — чем занимается лаборатория робототехники
Логическая память: что это, особенности, отличия от механической памяти
Логическая память против механической
Механическая память характеризуется запоминанием материала в той его форме, в какой он подаётся. Как услышал или увидел, так и «сохранил» в голове.
Чтобы между участками мозга, задействованными в запоминании, образовались прочные нейронные связи, необходимо многократное повторение материала. Недаром механическую память называют «зубрёжкой».
Зубрёжка полезна в изучении иностранных слов, трудных терминов, формул, имён и названий. Но смысловое содержание материала в процессе механическом заучивании отходит на второй план. Если при заучивании были какие-то ошибки, они будут воспроизведены и при ответе.
Логическая (смысловая) память предполагает осмысление материала. Она направлена на запоминание не внешней формы, а смысла. В основе лежат ассоциации, отражающие наиболее важные стороны изучаемого предмета или явления.
Когда человек не может что-то запомнить, скорее всего, он просто не вник в суть.
Осмысленный материал запоминается быстрее и, как правило, на всю жизнь. Это доказал немецкий психолог Герман Эббингауз. Его эксперимент показал, что для заучивания 36 бессмысленных слогов требуется в среднем 55 повторений, в то время как для запоминания стихотворного текста такого же размера — всего 6–7 повторений.
Смысловая память тоже нуждается в повторениях, но иного характера. Если при механическом заучивании монотонно воспроизводится один и тот же материал в одной и той же форме, то при логическом повторяется смысл, только разными словами и приёмами.
Как развить логическую память
Логическая память предполагает предварительную работу мышления. Материал сначала нужно проанализировать, разложив на составляющие части, выделить наиболее важное, установить связи, представить общую картину и познать суть.
<<Форма демодоступа>>
Анализ
Ответьте на вопрос: «Что именно и для чего я изучаю?».
Результаты этой мыслительной работы оформите в виде схемы, таблицы или образной словесной формулировки. Это переключит сознание с механического понимания материала на более концептуальное.
Синтез
Анализ предполагает осмысление каждой отдельной части объекта, а синтез — это изучение материала в целом.
Всегда думайте о том, как новая тема вплетается в то, что вы уже знаете, как она продвигает вас по пути понимания всего предмета. Так знания постепенно сложатся в единый пазл.
Поиск связей
Логическая память опирается на ассоциации. Порой мы забываем факты, даты, имена, формулы, но чётко помним суть. Это заслуга ассоциаций.
С чем у вас ассоциируется изучаемый материал? Попробуйте протянуть мысленные ниточки к вашему прошлому опыту. Чем больше связей вы построите, тем прочнее материал закрепится в долговременной памяти.
Познание сути
Теперь необходимо изучить сам материал. Чем глубже, тем лучше. Для этого:
- Изучите историю вопроса.
- Попытайтесь связать новую тему с той, что вам близка.
- Задействуйте эмоции. Например, изучая геоцентризм, попробуйте представить, что чувствовал Джордано Бруно, когда его вели к костру.
- Прочтите биографии людей, связанных с темой изучения.
- Читайте новости по теме, выписывайте цитаты экспертов.
Процесс логического запоминания
Описанные шаги — от анализа до познания сути — необходимо проделать при максимальном сосредоточении внимания. Уберите подальше телефон, выключите музыку и даже выгоните кота из комнаты, если он мешает вам думать.
Поняв суть, важно пересказать тему своими словами, не опираясь на определения из учебника. Возможно, вам потребуется время, чтобы переосмыслить сложную концепцию и подобрать собственные определения. Потратьте его — это очень важно.
Важнейшим элементом смыслового запоминания является систематическое повторение. Без него никуда! Только помните о главном различии с механической памятью: вы должны пересказывать материал так, как его понимаете, каждый раз вкладывая эмоции, а не бездумно тарабанить чьи-то формулировки.
Тренировка логической памяти
Развивать смысловое запоминание можно с помощью игр и специальных упражнений.
Ассоциации
Для игры нужны двое: ведущий и участник. Ведущий зачитывает пары слов, связанные общим смыслом. Например: корова – молоко, снег – зима, книга – Пушкин, щётка – зубы. Пары нужно усложнять по мере развития навыка.
Задача игрока: за одну минуту запомнить как можно больше пар. Затем ведущий читает одно из слов, а участник должен назвать второе. После нескольких кругов можно поменяться ролями.
Лишнее слово
Для этой игры вам тоже понадобится помощник. Его задачей будет составить несколько цепочек из трёх слов. Два из них должны иметь логическую связь (только не совсем очевидную), а третье нет. Например: «Бродский — костёр — зонтик», «лебедь — стройка — экран».
Вам необходимо объяснить связь между парой слов и почему не подходит третье. Творческий полёт мысли приветствуется, то есть ваш вариант может не совпасть с замыслом помощника.
Вольный пересказ
Прочитайте следующий текст один раз и запишите на листок его содержание. Можете сокращать, менять слова и абзацы — главное передать смысл.
«Мириелю пришлось испытать судьбу всякого нового человека (1), попавшего в маленький городок (2), где много языков (3), которые болтают (4), и очень мало голов (5), которые думают (6). Ему пришлось испытать это (7), хотя он был епископом (8), и именно потому, что он был епископом (9). Впрочем, слухи (10), которые люди связывали с его именем (11), были всего только слухи (12), намеки, словечки, пустые речи (13), попросту говоря, если прибегнуть к выразительному языку южан, околесица (14)».
В данном тексте 14 смысловых единиц. После того как вы записали свой пересказ, посмотрите, сколько смысловых единиц получилось у вас. За каждую даётся один балл.
Можно брать тексты разной длины и экспериментировать. В этом случае смысловые единицы оригинала стоит считать после пересказа.
Что такое компьютерная память и какие бывают типы?
От
- Александр С. Гиллис, Технический писатель и редактор
Память — это электронное место для хранения инструкций и данных, к которым компьютер должен быстро обращаться. Здесь хранится информация для немедленного использования. Память является одной из основных функций компьютера, так как без нее компьютер не сможет нормально функционировать. Память также используется операционной системой компьютера, аппаратным и программным обеспечением.
Технически существует два типа компьютерной памяти: первичная и вторичная. Термин память используется как синоним основной памяти или как аббревиатура для конкретного типа первичной памяти, называемой оперативной памятью (ОЗУ). Этот тип памяти расположен на микросхемах, которые физически расположены близко к микропроцессору компьютера.
Если бы центральному процессору компьютера (ЦП) приходилось использовать только дополнительное запоминающее устройство, компьютеры работали бы намного медленнее. В целом, чем больше памяти (первичной памяти) имеет вычислительное устройство, тем реже компьютер должен обращаться к инструкциям и данным из более медленных (вторичных) форм хранения.
На этом изображении показано, как первичная, вторичная и кэш-память соотносятся друг с другом с точки зрения размера и скорости. Память и хранилищеПонятие памяти и хранилища можно легко объединить как одно и то же понятие; однако есть некоторые явные и важные различия. Короче говоря, память — это первичная память, а хранилище — вторичная память. Память относится к местоположению краткосрочных данных, а хранилище относится к местоположению данных, хранящихся на долгосрочной основе.
Память чаще всего называют основной памятью компьютера, например оперативной памятью. Память также является местом обработки информации. Это позволяет пользователям получать доступ к данным, которые хранятся в течение короткого времени. Данные хранятся только в течение короткого времени, поскольку основная память энергозависима, то есть не сохраняется при выключении компьютера.
Термин хранилище относится к вторичной памяти, где хранятся данные в компьютере. Примером хранилища является жесткий диск или жесткий диск (HDD). Хранилище энергонезависимо, то есть информация сохраняется после выключения и повторного включения компьютера. Работающая программа может находиться в основной памяти компьютера, когда используется — для быстрого поиска информации — но когда эта программа закрывается, она находится во вторичной памяти или хранилище.
Объем доступного места в памяти и хранилище также различается. Как правило, на компьютере больше места для хранения, чем памяти. Например, ноутбук может иметь 8 ГБ оперативной памяти и 250 ГБ встроенной памяти. Разница в пространстве заключается в том, что компьютеру не потребуется быстрый доступ ко всей хранящейся на нем информации сразу, поэтому выделения примерно 8 ГБ места для запуска программ будет достаточно.
Термины память и хранилище могут сбивать с толку, потому что их использование сегодня не всегда последовательно. Например, ОЗУ можно назвать первичным хранилищем, а типы вторичного хранилища могут включать флэш-память. Во избежание путаницы проще говорить о памяти с точки зрения того, является ли она энергозависимой или энергонезависимой, а о хранилище — с точки зрения того, первична она или вторична.
Как работает память компьютера?Когда программа открыта, она загружается из дополнительной памяти в основную память. Поскольку существуют разные типы памяти и хранилища, примером этого может быть перемещение программы с твердотельного накопителя (SSD) в ОЗУ. Поскольку доступ к основному хранилищу осуществляется быстрее, открытая программа сможет взаимодействовать с процессором компьютера на более высоких скоростях. Доступ к основной памяти можно получить немедленно из слотов временной памяти или других мест хранения.
Память энергозависима, это означает, что данные в памяти хранятся временно. После выключения вычислительного устройства данные, хранящиеся в энергозависимой памяти, будут автоматически удалены. Когда файл сохраняется, он будет отправлен во вторичную память для хранения.
Компьютеру доступно несколько типов памяти. Она будет работать по-разному в зависимости от типа используемой первичной памяти, но в целом память на основе полупроводников больше всего ассоциируется с памятью. Полупроводниковая память будет состоять из интегральных схем с транзисторами металл-оксид-полупроводник (МОП) на основе кремния.
Типы компьютерной памятиВ целом память можно разделить на первичную и вторичную память; более того, при обсуждении только первичной памяти существует множество типов памяти. Некоторые типы основной памяти включают следующие
- Кэш-память. Эта временная область хранения, известная как кэш, более доступна для процессора, чем основной источник памяти компьютера. Ее также называют памятью ЦП , поскольку она обычно интегрируется непосредственно в микросхему ЦП или размещается на отдельной микросхеме с шинным соединением с ЦП.
- ОЗУ. Этот термин основан на том факте, что процессор может напрямую обращаться к любому месту хранения.
- Динамическое ОЗУ. DRAM — это тип полупроводниковой памяти, которая обычно используется данными или программным кодом, необходимым для работы компьютерного процессора.
- Статическая оперативная память. SRAM сохраняет биты данных в своей памяти до тех пор, пока на нее подается питание. В отличие от DRAM, которая хранит биты в ячейках, состоящих из конденсатора и транзистора, SRAM не нужно периодически обновлять.
- SDRAM с удвоенной скоростью передачи данных. DDR SRAM — это SDRAM, которая теоретически может повысить тактовую частоту памяти как минимум до 200 МГц.
- Двойная скорость передачи данных 4 Синхронное динамическое ОЗУ. DDR4 RAM — это тип DRAM с интерфейсом с высокой пропускной способностью, который является преемником предыдущих версий DDR2 и DDR3. Оперативная память DDR4 обеспечивает более низкие требования к напряжению и более высокую плотность модулей. Он сочетается с более высокой скоростью передачи данных и позволяет использовать двойные встроенные модули памяти (DIMMS) объемом до 64 ГБ.
- Динамическое ОЗУ Rambus. DRDRAM — это подсистема памяти, которая обещала передавать до 1,6 млрд байт в секунду. Подсистема состоит из ОЗУ, контроллера ОЗУ, шины, соединяющей ОЗУ с микропроцессором и устройствами компьютера, которые его используют.
- Постоянная память. ПЗУ — это тип компьютерной памяти, содержащий энергонезависимые постоянные данные, которые обычно можно только читать, но не записывать. ПЗУ содержит программу, которая позволяет компьютеру запускаться или восстанавливаться при каждом включении.
- Программируемое ПЗУ. PROM — это ПЗУ, которое может быть изменено пользователем один раз. Это позволяет пользователю адаптировать программу микрокода с помощью специальной машины, называемой программатором PROM .
- Стираемый ПРОМ. EPROM — это программируемая постоянная память PROM, которую можно стирать и использовать повторно. Стирание вызвано излучением интенсивного ультрафиолетового света через окно, встроенное в микросхему памяти.
- Электрически стираемое ППЗУ. EEPROM — это изменяемое пользователем ПЗУ, которое можно многократно стирать и перепрограммировать при подаче электрического напряжения выше нормального. В отличие от микросхем EPROM, EEPROM не нужно извлекать из компьютера для модификации. Однако микросхема EEPROM должна быть стерта и перепрограммирована полностью, а не выборочно.
- Виртуальная память. Метод управления памятью, при котором вторичная память может использоваться так, как если бы она была частью основной памяти. В виртуальной памяти используется аппаратное и программное обеспечение, позволяющее компьютеру компенсировать нехватку физической памяти путем временного переноса данных из ОЗУ на дисковое хранилище.
В начале 1940-х объем памяти был ограничен несколькими байтами. Одним из наиболее значительных признаков прогресса того времени было изобретение акустической памяти на линии задержки. Эта технология позволила линиям задержки хранить биты в виде звуковых волн в ртути, а кристаллы кварца действовать как преобразователи для чтения и записи битов. Этот процесс может хранить несколько сотен тысяч битов. В конце 19В 40-х годах начали исследовать энергонезависимую память, и была создана память на магнитных сердечниках, которая позволяла вызывать память после потери питания. К 1950-м годам эта технология была улучшена и коммерциализирована, что привело к изобретению PROM в 1956 году. Память на магнитных сердечниках стала настолько широко распространенной, что до 1960-х годов она была основной формой памяти.
Полевые транзисторы металл-оксид-полупроводник, также известные как МОП-полупроводниковая память, были изобретены в 1959 году. Это позволило использовать МОП-транзисторы в качестве элементов для хранения ячеек памяти. Память MOS была дешевле и потребляла меньше энергии по сравнению с памятью на магнитных сердечниках. Биполярная память, в которой использовались биполярные транзисторы, начала использоваться в начале 19 века.60-е годы.
В 1961 году Боб Норман предложил концепцию использования твердотельной памяти на микросхеме интегральной схемы (ИС). IBM сделала память популярной в 1965 году. Однако пользователи сочли твердотельную память слишком дорогой для использования в то время по сравнению с другими типами памяти. Другими достижениями в период с начала до середины 1960-х годов были изобретение биполярной SRAM, введение Toshiba DRAM в 1965 году и коммерческое использование SRAM в 1965 году. Однотранзисторная ячейка DRAM была разработана в 1919 году.66, за которым последовало полупроводниковое МОП-устройство, использованное для создания ПЗУ в 1967 году. С 1968 до начала 1970-х годов также начала популяризироваться МОП-память N-типа (NMOS).
К началу 1970-х годов память на основе МОП стала гораздо более широко использоваться в качестве формы памяти. В 1970 году у Intel появилась первая коммерческая микросхема DRAM IC. Годом позже была разработана стираемая ППЗУ, а в 1972 году была изобретена ЭСППЗУ.
Последнее обновление: октябрь 2020 г.
Продолжить чтение О памяти- Флэш-память и оперативная память: в чем разница?
- Краткое руководство по оперативной памяти
- Кэш и уровень: в чем разница между кешем и хранилищем?
- Память и память
- Белая книга: Факты о памяти
тень IT
Shadow IT — это аппаратное или программное обеспечение на предприятии, которое не поддерживается центральным ИТ-отделом организации.
Сеть
- DHCP (протокол динамической конфигурации хоста)
DHCP (Dynamic Host Configuration Protocol) — это протокол управления сетью, используемый для динамического назначения IP-адреса любому . ..
- облачная сеть радиодоступа (C-RAN)
Облачная сеть радиодоступа (C-RAN) — это централизованная архитектура на основе облачных вычислений для сетей радиодоступа.
- потоковая телеметрия сети
Потоковая сетевая телеметрия — это служба сбора данных в режиме реального времени, в которой сетевые устройства, такие как маршрутизаторы, коммутаторы и …
Безопасность
- кража учетных данных
Кража учетных данных — это тип киберпреступления, связанный с кражей удостоверения личности жертвы.
- суверенная идентичность
Самостоятельная суверенная идентификация (SSI) — это модель управления цифровой идентификацией, в которой отдельные лица или предприятия владеют единолично …
- Сертифицированный специалист по безопасности информационных систем (CISSP)
Certified Information Systems Security Professional (CISSP) — это сертификат информационной безопасности, разработанный . ..
ИТ-директор
- рассказывание историй о данных
Рассказывание историй о данных — это процесс перевода анализа данных в понятные термины с целью повлиять на деловое решение…
- оншорный аутсорсинг (внутренний аутсорсинг)
Оншорный аутсорсинг, также известный как внутренний аутсорсинг, — это получение услуг от кого-то вне компании, но в пределах …
- FMEA (анализ видов и последствий отказов)
FMEA (анализ видов и последствий отказов) представляет собой пошаговый подход к сбору сведений о возможных точках отказа в …
HRSoftware
- самообслуживание сотрудников (ESS)
Самообслуживание сотрудников (ESS) — это широко используемая технология управления персоналом, которая позволяет сотрудникам выполнять множество связанных с работой . ..
- платформа обучения (LXP)
Платформа обучения (LXP) — это управляемая искусственным интеллектом платформа взаимного обучения, предоставляемая с использованием программного обеспечения как услуги (…
- Поиск талантов
Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса …
Служба поддержки клиентов
- виртуальный помощник (помощник ИИ)
Виртуальный помощник, также называемый помощником ИИ или цифровым помощником, представляет собой прикладную программу, которая понимает естественный язык …
- жизненный цикл клиента
В управлении взаимоотношениями с клиентами (CRM) жизненный цикл клиента — это термин, используемый для описания последовательности шагов, которые проходит клиент. ..
- интерактивный голосовой ответ (IVR)
Интерактивный голосовой ответ (IVR) — это автоматизированная система телефонии, которая взаимодействует с вызывающими абонентами, собирает информацию и маршрутизирует …
Рабочая память: как держать вещи «в уме» в краткосрочной перспективе
Следующее эссе перепечатано с разрешения The Conversation, интернет-издания, посвященного последним исследованиям.
Когда вам нужно запомнить номер телефона, список покупок или набор инструкций, вы полагаетесь на то, что психологи и нейробиологи называют рабочей памятью. Это способность удерживать и обрабатывать информацию в уме в течение коротких промежутков времени. Это для вещей, которые важны для вас в настоящий момент, а не через 20 лет.
Исследователи считают, что рабочая память играет центральную роль в функционировании мозга. Он коррелирует со многими более общими способностями и результатами, такими как интеллект и успеваемость, и связан с основными сенсорными процессами.
Учитывая ее центральную роль в нашей психической жизни и тот факт, что мы осознаем по крайней мере часть ее содержимого, рабочая память может стать важной в нашем стремлении понять само сознание. Психологи и нейробиологи сосредотачиваются на разных аспектах, изучая рабочую память: психологи пытаются наметить функции системы, а нейробиологи больше внимания уделяют ее нейронным основам. Вот снимок того, где сейчас находится исследование.
Сколько у нас оперативной памяти?
Возможности ограничены — мы можем держать в уме только определенное количество информации в любой момент времени. Но исследователи спорят о природе этого предела.
Многие предполагают, что рабочая память может хранить ограниченное количество «элементов» или «фрагментов» информации. Это могут быть цифры, буквы, слова или другие единицы измерения. Исследования показали, что количество битов, которые могут храниться в памяти, может зависеть от типа предмета — вкусов предлагаемого мороженого и цифр числа «пи».
Альтернативная теория предполагает, что рабочая память действует как непрерывный ресурс, общий для всей запоминаемой информации. В зависимости от ваших целей разные части запоминаемой информации могут получать разное количество ресурса. Нейробиологи предположили, что этим ресурсом может быть нейронная активность, при этом разные части запомненной информации имеют различное количество активности, связанной с ними, в зависимости от текущих приоритетов.
Другой теоретический подход вместо этого утверждает, что предел емкости возникает из-за того, что разные элементы будут мешать друг другу в памяти.
И, конечно же, воспоминания со временем угасают, хотя повторение информации, находящейся в рабочей памяти, похоже, смягчает этот процесс. То, что исследователи называют поддерживающей репетицией, включает в себя мысленное повторение информации без учета ее значения — например, просмотр списка продуктов и запоминание продуктов просто как слов, независимо от того, какой едой они станут.
Напротив, детальное повторение включает в себя придание информации значения и связывание ее с другой информацией. Например, мнемотехника облегчает детальную репетицию, связывая первую букву каждого элемента списка с некоторой другой информацией, которая уже хранится в памяти. Кажется, что только тщательное повторение может помочь консолидировать информацию из рабочей памяти в более прочную форму, называемую долговременной памятью.
В визуальной области репетиция может включать движения глаз, при этом визуальная информация привязывается к пространственному положению. Другими словами, люди могут посмотреть на местонахождение запомненной информации после того, как она ушла, чтобы напомнить им, где она была.
Оперативная память по сравнению с долговременной памятью
Долговременная память характеризуется гораздо большей емкостью памяти. Информация, которую он содержит, также более долговечна и стабильна. Долгосрочные воспоминания могут содержать информацию об эпизодах из жизни человека, семантике или знаниях, а также более неявные типы информации, например, как использовать объекты или двигать тело определенным образом (двигательные навыки).
Исследователи долгое время считали рабочую память воротами в долговременное хранилище. Достаточно отрепетировать информацию в рабочей памяти, и память может стать более постоянной.
Неврология проводит четкое различие между ними. Он считает, что рабочая память связана с временной активацией нейронов в головном мозге. Напротив, считается, что долговременная память связана с физическими изменениями в нейронах и их связях. Это может объяснить кратковременный характер рабочей памяти, а также ее большую восприимчивость к прерываниям или физическим потрясениям.
Как рабочая память меняется в течение жизни?
Результаты тестов на рабочую память улучшаются на протяжении всего детства. Его способность является основной движущей силой когнитивного развития. Результаты оценочных тестов неуклонно повышаются в младенчестве, детстве и подростковом возрасте. Затем производительность достигает пика в молодом взрослом возрасте. С другой стороны, рабочая память является одной из когнитивных способностей, наиболее чувствительных к старению, и эффективность этих тестов снижается в пожилом возрасте.
Считается, что увеличение и уменьшение объема рабочей памяти в течение жизни связано с нормальным развитием и деградацией префронтальной коры головного мозга, области, ответственной за высшие когнитивные функции.
Мы знаем, что повреждение префронтальной коры вызывает дефицит рабочей памяти (наряду со многими другими изменениями). А записи активности нейронов в префронтальной коре показывают, что эта область активна в течение «периода задержки» между моментом предъявления стимула наблюдателю и моментом, когда он должен дать ответ, то есть время, в течение которого он пытается вспомнить Информация.
Несколько психических заболеваний, включая шизофрению и депрессию, связаны со снижением функционирования префронтальной коры, что можно выявить с помощью нейровизуализации. По той же причине эти заболевания также связаны со снижением способности к рабочей памяти. Интересно, что у пациентов с шизофренией этот дефицит более заметен при выполнении зрительных, а не вербальных задач на рабочую память. В детстве дефицит рабочей памяти связан с трудностями с вниманием, чтением и речью.
Рабочая память и другие когнитивные функции
Префронтальная кора связана с широким спектром других важных функций, включая личность, планирование и принятие решений. Любое ухудшение функционирования этой области, вероятно, повлияет на множество различных аспектов познания, эмоций и поведения.
Важно отметить, что многие из этих префронтальных функций считаются тесно связанными с рабочей памятью и, возможно, зависящими от нее. Например, планирование и принятие решений требуют, чтобы мы уже «имели в виду» соответствующую информацию, чтобы сформулировать курс действий.
Теория когнитивной архитектуры, называемая Теорией глобального рабочего пространства, опирается на рабочую память. Это предполагает, что информация, временно удерживаемая «в уме», является частью «глобального рабочего пространства» в уме, которое связано со многими другими когнитивными процессами, а также определяет, что мы осознаем в любой данный момент. Учитывая, что эта теория предполагает, что рабочая память определяет то, что мы осознаем, более глубокое понимание этого может стать важной частью разгадки тайны сознания.
Улучшение рабочей памяти
Есть некоторые свидетельства того, что рабочую память можно тренировать с помощью интерактивных заданий, таких как простые игры для детей, которые задействуют память. Было высказано предположение, что это обучение может помочь улучшить баллы по другим типам заданий, например, связанным со словарным запасом и математикой. Есть также некоторые свидетельства того, что тренировки для улучшения рабочей памяти могут улучшить производительность детей с особыми заболеваниями, такими как СДВГ. Однако в обзорах исследований часто делается вывод о том, что преимущества недолговечны и зависят от обучаемой задачи.
Кроме того, улучшения, обнаруженные в некоторых из этих исследований, могут быть связаны с изучением того, как более эффективно использовать ресурсы рабочей памяти, а не с увеличением ее объема.