Белый шум википедия: Что такое белый шум и почему его не используют в системах маскировки звука

Содержание

Что такое белый шум и почему его не используют в системах маскировки звука

Сегодня в офисах по всему миру борются с шумом с помощью шумовых завес (систем маскировки звука). Часто эти комплексы путают с генераторами белого или розового шума, которые можно встретить в частных домах и отелях. Инженеры-акустики компании Soft dB максимально просто поясняют разницу между ними.

Вы наверняка слышали термин «белый шум». Эту фразу часто употребляют в переносном смысле, когда хотят сказать о потоке бесполезной информации, скрывающей истинную суть происходящего. Возможно, вы также читали о том, что белый шум помогает быстрее уснуть или лучше сосредоточиться, поскольку скрывает громкие звуки в помещении – «маскирует» их. В статьях, посвященных акустике, понятие «белый шум» часто соседствует с терминами «розовый шум» и «маскировка звука». Многие считают их равнозначными и называют системы маскировки звука генераторами белого/розового/красного шума. Это большая ошибка, цена которой — неправильный выбор оборудования для устранения нежелательных шумов в офисе. Почему? Мы попытаемся как можно проще объяснить разницу между разными шумами.

Что такое «белый шум» и почему он «белый»?

Для начала разберемся с белым шумом. Почему его называют «белым»? Разве звук может иметь цвет? Нет, конечно. Тут дело в аналогии. Любой школьник знает, что белый свет – это сочетание всех цветов спектра. По аналогии со светом, белый шум – это «смесь» звуков, воспроизводимых одновременно на всех частотах, которые воспринимает наше ухо. Конечно, инженер бы сказал иначе: белый шум – это шум, спектральные составляющие которого равномерно распределены по всему диапазону используемых частот, т.е. спектральная плотность мощности которых одинакова либо слабо отличается в каком-либо рассматриваемом диапазоне. Но мы ведь договорились объяснять тему максимально просто, поэтому для простоты скажем, что пример белого шума в природе – характерный звук водопада.


Белый шум  напоминает звук телевизора, не настроенного на прием ТВ-каналов.

Розовый и красный шумы — это тоже сочетание звуков с определенными характеристиками. Пример розового шума — звук пролетающего вертолета. А в системах маскировки звука (шумовых завесах) используются специально «сконструированные» шумы. Их применяют, чтобы  выровнять акустический фон в офисах и повысить конфиденциальность разговоров — сделать неразборчивыми слова, произнесенные на отдалении от невольного слушателя, и не предназначенные для его ушей.

Все «цветные» шумы называют широкополосными: их энергия распределена по всему диапазону звуковых частот. Иначе говоря, это непрерывные беспорядочные шумы, которые звучат одновременно на низких, средних и высоких частотах. Цвет шума определяется тем, в каких пропорциях  энергия шума распределяется по диапазону его частот. На цветные шумы похожи звуки, которые мы встречаем в жизни: звук ливня, водопада или ветра, гудение вентиляционной системы или шум большого стадиона. На белый шум больше всего похож звук, который издает телевизор, когда не настроен на прием ТВ-сигнала, и на его экране мы видим «снег».

 

В чем разница между широкополосными шумами

Белый и розовый шумы, а также маскирующий звук системы саундмаскинга (шумовой завесы, системы маскировки звука) — широкополосные. Но, по большому счету, это единственное, что объединяет эти шумы. Причем если розовый шум в каком-то смысле можно считать производным от белого шума, то звук системы саундмаскинга (иногда его называют «маскер») им не является. Неправильно также считать его сочетанием белого и розового шумов. Как мы уже говорили, это специально «сконструированный» шум. Причем созданный с единственной целью: эффективно маскировать нежелательные шумы (звук посторонних разговоров, громкие и резкие звуки в тихом помещении), которые отвлекают офисных сотрудников от работы. 

К числу самых сильных отвлекающих шумов, особенно в шумных помещениях с открытой планировкой («опенспейс»), относят в первую очередь разговоры сотрудников, которые ведутся на отдалении от невольных слушателей — коллег, сидящих за соседними столами. Человек непроизвольно отвлекается на обрывки фраз, произнесенных сослуживцами, причем делает это неосознанно. В зависимости от задачи, которую выполняет работник, ему требуется от одной до десяти минут, чтобы вновь сосредоточиться.

Шумный офис — не лучшее место для работы. Но и слишком тихий офис — тоже плохо: в полной тишине сотрудникам может отвлечь даже звуку упавшего на пол карандаша.  Задача системы маскировки звука — выровнять акустический фон в помещении, а также сделать посторонние разговоры неразборчивыми. И делает она это с помощью специально рассчитанного инженерами шума.

Бороться с шумом с помощью другого шума? Казалось бы, странная идея. Но именно так и работает хорошая система маскировки звука.

Почему нужен специально рассчитанный шум маскера? Разве белого или розового шума недостаточно, чтобы замаскировать нежелательные шумы? Действительно, в какой-то мере резкие звуки можно нивелировать с помощью любого широкополосного шума. Именно поэтому считается, что белый шум помогает быстрее уснуть. Но в отличие от других широкополосных шумов, маскер шумовой завесы рассчитан устранять именно распространенные офисные шумы, особенно в офисах «опенспейс». Разница будет особенно очевидна, если ради эксперимента установить в офисе бытовой генератор белого шума. Тогда вы сразу поймете, что белый шум в офисе абсолютно бесполезен.

 

Чем белый шум отличается от розового

Если попросить инженера-акустика пояснить разницу между белым и розовым шумом, его рассказ будет коротким, но малопонятным: белый шум имеет примерно одинаковую спектральную плотность мощности на всех частотах, а розовый — примерно одинаковую спектральную плотность мощности во всех октавных полосах частот. Если попытаться объяснить проще, то и белый и розовый шумы включают звуки одновременно всех частот, различимых человеческим ухом, т.е. от 20 Гц до 20 000 Гц. Но энергия этих звуков распределяется по частотам совершенно по-разному.

Розовый шум напоминает шум дождя, не правда ли?

 

Спектр белого шума

Главная причина путаницы при сравнении белого и розового шума — их спектры. Путаница в основном связана с тем, что графические представления этих шумов полностью различается в зависимости от типа используемого спектроанализатора.

Например, спектрограмма белого шума, представленная в узких полосах частот, выглядит, как на рисунке ниже. Видите, насколько равномерен спектр? Он таков, что энергия шума во всех полосах частот (на графике частоты возрастают слева направо по оси Х) распределена примерно равномерно.

Спектр белого шума в узких полосах частот

Рис. 1. Спектр белого шума, показанный на графике в узких полосах частот. Энергия шума распределена примерно одинаково по всем полосам. Похоже на стену, не правда ли? Поэтому иногда белый шум сравнивают с непроницаемой стеной.

А теперь посмотрите, как выглядит тот же самый спектр белого шума не в узких, а в третьоктавных полосах частот (рис. 2). Совершенно другая картина по сравнению с рисунком 1. Спектрограмма уже не плоская: энергия растет с повышением частоты.

Спектр белого шума в третьоктавных полосах частот

Рис. 2 Белый шум. Его энергия равномерно распределена по всем частотам, но чем дальше вправо по оси частот мы движемся, тем более высокие частоты группируются в октавные полосы, и тем интенсивнее шум.

Если проанализировать белый шум в третьоктавных полосах, то чем выше частоты, тем мощнее шум. Но ведь мы уже говорили, что на каждой отдельной частоте (100 Гц, 200 Гц, 1000 Гц, 5000 Гц и т.п.) энергия шума должна быть примерно одинаковой. Почему же мы видим ее повышение? Действительно, компоненты белого шума имеют одинаковую энергию на каждой отдельной частоте, но не в каждой октавной полосе. И чтобы понять, почему так происходит, давайте разберемся, что такое октавы.

Что такое октавы?

Упрощенно говоря, октавы — это группы частот, которые помогают количественно оценить то, как мы воспринимаем разные частоты на слух. Каждая октава представляет общий уровень энергии шума в определенном диапазоне частот. Важный факт: чем выше частоты, тем более широкий их диапазон собирается в октавные полосы. Это поясняется тем, что человеческий слух легче улавливает разницу между отдельными низкими частотами, но с повышением частот мы все хуже распознаем каждую частоту по отдельности, даже если они разнесены достаточно далеко друг от друга.

Поэтому в низкочастотных диапазонах октавные полосы более узкие, чем в высокочастотных. В таблице ниже указаны октавные полосы и входящие в них частоты. Цифры говорят сами за себя: в октавную полосу 8000 Гц объединено намного больше частот, чем в октавную полосу 63 Гц.

Октавные полосы и входящие в них частоты

ЦЕНТРАЛЬНАЯ ЧАСТОТА ОКТАВНОГО ДИАПАЗОНА (ГЦ)

НИЖНЯЯ ЧАСТОТА

ВЕРХНЯЯ ЧАСТОТА

ОКТАВНАЯ ПОЛОСА ЧАСТОТ (КОЛИЧЕСТВО ЧАСТОТ)

63

44

88

44

125

88

177

89

250

177

355

178

500

355

710

355

1000

710

1420

710

2000

1420

2840

1420

4000

2840

5680

2840

8000

5680

11360

5680

Говоря математическим языком, октава — это интервал, в котором соотношение частот звука составляет один к двум. Например, как показано в таблице выше, между частотами 88 Гц и 177 Гц расположена одна октавная полоса, а именно полоса 125 Гц. Между частотами 177 Гц and 355 Гц — октавная полоса 250 Гц. Эта полоса содержит 178 отдельных частот, а полоса 125 Гц — только 89. Т.е. октавная полоса 250 Гц шире, чем полоса 125 Гц.

 

Октавы – логарифмическая мера частот

Давайте вернемся к рис. 2. Почему октавные полосы указаны на нем как имеющие одинаковую ширину, хотя выше мы объясняли, что это не так? В действительности ширина полос разная, но для упрощения их часто изображают на спектрограмме равными по ширине, как на рис. 2. Мы называем этот формат «отображением октавных полос в  логарифмическом масштабе».

В этом случае, что же такое «третьоктавные полосы»? Это одна рассматриваемая полоса, разделенная на три равные части. С помощью такого деления инженер-акустик может точнее анализировать составляющие шума.

 

Чем выше частота, тем более громким шум воспринимается на слух

Еще один интересный факт: на слух белый шум воспринимается более резким, чем можно было бы ожидать, увидев на графике относительно ровный частотный спектр. Причина в том, что система слуха человека воспринимает звук в логарифмическом масштабе — т.е. октавами, а не в линейном масштабе (т.е. узкими полосами). Иными словами, нам кажется, что высокочастотные звуки громче, чем низкочастотные той же мощности. Поэтому с точки зрения восприятия белый шум звучит громче и имеет шипящие нотки в высокочастотных октавных полосах. Если говорить точнее, мощность белого шума возрастает на 3 дБ на каждую октаву вверх по частотному диапазону.

Как создать розовый шум

Что будет, если взять спектр белого шума, отображенный в логарифмическом масштабе (см. рис. 2), и выровнять растущую кривую мощности? Вы получите октавные полосы, мощность шума в которых будет одинаковой. Помните определение розового шума? Это шум, компоненты которого имеют одинаковую спектральную мощность в каждой октаве. Иными словами, мы превратим белый шум в розовый.

Розовый шум в третьоктавных диапазонах

Рис. 3. Если говорить очень упрощенно, розовый шум — это белый шум со «срезанными» высокими частотами.  Вот почему его воспринимают как более мягкий и приятный по сравнению с белым шумом. Действительно, шум телевизора, не принимающего ТВ-сигнал (белый шум) менее приятен большинству людей, чем мягкий шум небольшого дождя (розовый шум).

Теперь вспомним, что на рис. 1 спектр белого шума выглядел плоским в линейном масштабе. Исходя из полученных знаний о розовом шуме и о том, как он отличается по распределению мощности, давайте ответим на вопрос, как выглядит его спектр в узких полосах частот, а не в третьоктавных.

Если спектральная мощность белого шума равномерна на всех частотах, а его спектр в октавных полосах демонстрирует повышение мощности (восходящая прямая на графике), то мощность розового шума равномерно распределяется по октавам. Это значит, что на узкополосной спектрограмме кривая мощности будет падать, (см. рис. 4)

Спектр розового шума в узких полосах частот

Рис 4. Энергия белого шум равномерно распределяется по частотам, а энергия розового уменьшается по мере повышения частот.

 

Белый шум в сравнении со звуком шумовой завесы – маскером

Мы, инженеры Soft dB, занимаемся разработкой систем маскировки звука, которые повышают конфиденциальность разговоров в офисе и помогают сотрудникам сосредоточиться, не отвлекаясь на посторонние шумы. Нас часто спрашивают: «Вы ведь продаете генератор белого (или розового) шума?». Наш ответ – нет. Достаточно просто посмотреть на спектрограмму маскирующего звука шумовой завесы в третьоктавных полосах (в логарифмическом масштабе), и сравнить этот график со спектрограммой белого шума. Вы сразу поймете, что они различаются.

Если взглянуть на спектрограмму, можно заметить что звук шумовой завесы — полная противоположность белому шуму. По мере повышения частоты мощность белого шума растет на 3 дБ на каждую октаву, а маскирующий звук шумовой завесы, наоборот, теряет в мощности 3 дБ на октаву.

 

Спектр маскирующего звука шумовой завесы в третьоктавных полосах частот

Рис 5. Идеальный спектр шума саундмаскинга в третьоктавных полосах частот, рассчитанный Национальным исследовательским советом Канады (NRC). В отличие от белого шума типичный звук маскера теряет мощность по мере повышения частоты. Меньшая мощность на высоких частотах делает звук системы саундмаскинга намного более приятным на слух.

 

Какая система маскировки звука лучше

Цель любого производителя систем маскировки звука – выровнять акустический фон в офисе, повысить конфиденциальность бесед и устранить отвлекающий фактор в виде посторонних разговоров сотрудников. По большому счету, все поставщики борются за единственный «магический» параметр: спектр маскирующего шума. И все заявляют, что по этому параметру они лучшие на рынке. Мы, инженеры Soft dB, не исключение.

Но рабочие настройки шумовой завесы выполняет не производитель, а системный интегратор или инсталлятор оборудования, который устанавливает шумовую завесу у конечного заказчика. И здесь вступает в игру не только спектр, но и гибкость настроек системы под нужды конкретного клиента.

 

Система маскировки звука SoftdB

Как инженеры-акустики мы утверждаем, что спектр шума системы маскировки звука Soft dB точнее, чем у конкурирующих систем, соответствует идеальной спектрограмме, рассчитанной Национальным исследовательским советом Канады (NRC). Но еще одно неоспоримое преимущество нашей системы в том, что она в реальном времени адаптирует спектр к постоянно меняющейся шумовой обстановке в офисе и даже в каждой его зоне по отдельности. Причем делает это очень точно.

Звук шумовой завесы Soft dB не тревожит сотрудников, получается мягким, приятным и едва различимым на слух. А главное — он эффективно маскирует разговоры, которые ведутся на удалении от невольного слушателя. И все это благодаря тонкой подстройке спектра маскирующего звука в реальном времени, с учетом постоянно меняющейся шумовой обстановки. На то, чтобы добиться максимальной эффективности, у нас ушли годы научных исследований и полевых испытаний. Их итог – несколько патентов и уникальная по своей действенности система маскировки звука.

 

Шумовая завеса – это целая система, а не одна машина

С хорошей системой маскировки звука сотрудники сразу отметят, что в офисе стало тише и спокойнее. Более того, в отличие от генераторов белого и розового шума, звук маскера  практически не слышен, и сложно понять, откуда он доносится. Отчасти это происходит потому, что шумовая завеса – это целый комплекс оборудования, а не одиночный генератор белого шума, стоящий, например, у прикроватного столика в отеле.

Генератор белого шума бесполезен в офисах

Система маскировки звука включает множество специализированных динамиков разной формы и размера для установки небольшими группами, которые охватывают определенные зоны офиса. Неважно, сколько выделено таких зон: управление отдельными группами динамиков (большинство из которых спрятаны за фальш-потолком, а часть — открыто), выполняется через единый пользовательский интерфейс. И это очень удобно. Представьте, сколько времени вы потратили бы, перемещаясь по офису и настраивая параметры каждого динамика. Поэтому одно из главных преимуществ маскировки звука Soft dB — это сетевое управление всей системой.

 

Как работает шумовая завеса Soft dВ

А другое преимущество, как мы уже сказали, — это автоматическая подстройка (адаптация) звука маскера под меняющуюся шумовую обстановку в офисе. С помощью акустических сенсоров система определяет уровень шумового фона и меняет параметры маскера, чтобы эффективность маскировки звука всегда была самой высокой.

Плюс, динамики саундмаскинга Soft dB можно использовать как систему голосового оповещения в офисе.

Можно ли использовать белый и розовый шум вместо звукомаскировки?

Как мы уже говорили, в системах маскировки звука используется не белый и не розовый, а специально подобранный широкополосный шум. Означает ли это, что генераторы белого и розового шума совершенно бесполезны? Не совсем так. Согласно нескольким исследованиям (например, работа Pink noise: Effect on complexity synchronization of brain activity and sleep consolidation, опубликованная 2012 году в журнале the Journal of  Theoretical Biology), белый и розовый шумы помогают уснуть, поскольку до некоторой степени маскируют резкие звуки вроде шума автомобилей, лая собак, звука сирен и т.п.

Более того, в присутствии белого и розового шумов качество сна повышалось даже по сравнению с условиями, когда испытуемых помещали в абсолютно тихое помещение. По мнению ученых, это происходит потому, что наш мозг считает абсолютную тишину чем-то неестественным, нетипичным для нашей среды обитания. Поэтому в полной тишине многие люди ощущают тревогу, хуже засыпают и более чутко спят. 

Бытовые генераторы белого и розового шума часто используют дома у прикроватных столиков и в гостиницах. Пожалуй, этим их применение ограничивается. Для офисов с их особой акустической обстановкой такие устройства не подходят.

Выводы

Системы маскировки звука, как и генераторы белого и розового шумов, используют в своей работе широкополосные шумы. Но как мы уже выяснили, шум шуму рознь. Производители шумовых завес стараются рассчитать звук маскера так, чтобы он эффективно скрывал именно офисные шумы.  Самые эффективные шумовые завесы (например, Soft dB) делают свои системы адаптивными – способными в реальном времени отслеживать акустическую обстановку и менять под нее шум маскера. С такой системой все офисные сотрудники почувствуют, что в офисе стало намного комфортнее работать.

См. также: 


Если вы хотите получить дополнительную информацию о системах маскировки звука, узнать стоимость проекта для вашего офиса или ознакомиться с работой системы вживую, заполните форму и наши специалисты свяжуться с вами:



Подписка на новости

«Жужжалка»: радиостанция для шпионов или «рука мертвеца»?

  • Зарайя Горветт
  • BBC Future

Автор фото, iStock

Эта радиостанция ведет свои странные передачи на коротких волнах с 1982 года. Кому предназначено это жужжание и зачитывание в эфире на русском языке бессмысленных цифр и слов?

Где-то посередине перешейка, что разделяет Ладожское озеро и Финский залив, среди озер и болот, стоят проржавевшие железные ворота. За ними расположилось несколько радиовышек и заброшенных зданий, окруженных каменной стеной.

В этом довольно зловеще выглядящем месте, как полагают многие, находился один из передатчиков неизвестно кому принадлежащей коротковолновой радиостанции с позывным МДЖБ (как отмечает «Википедия», с 28 декабря 2015 г. позывной этой таинственной станции сменился на ЖУОЗ — Прим. переводчика).

24 часа в сутки, семь дней в неделю — и так на протяжении последних 35 лет эта станция передает в эфир монотонный сигнал, прерывистое жужжание.

Один или два раза в неделю мужской или женский голос читает бессмысленный набор русских слов, например, «жито», «текстолит», «заборчик»… Вот и всё. Любой, кто настроился на частоту 4625 кГц, может слушать эти странные радиопередачи практически в любом уголке мира.

Для всех ее фанатов она — the Buzzer, «Жужжалка». Кроме того, у нее в настоящее время есть, как минимум, еще две «сестры» — the Pip («Пищалка») и the Squeaky Wheel («Скрипучее колесо»). Как честно признаются многие их слушатели, совершенно непонятно, в чем смысл передач.

И в самом деле, «сигнал не несет абсолютно никакой информации», — говорит Дэвид Стапплз, эксперт по электронной разведке Университета Сити в Лондоне.

Что же это такое?

Автор фото, iStock

Подпись к фото,

«Жужжалку» может слушать любой — достаточно настроить свой приемник на частоту 4625 кГц

Как полагают, эта частота принадлежит российским военным, хотя те никогда этого не подтверждали. (По мнению авторов статьи в русскоязычной «Википедии», это станция оповещения, зарезервированная для системы гражданской обороны и на случай катаклизмов. — Прим. переводчика.)

Радиопередачи начались, когда коммунистическая система была на последнем издыхании и уже было очевидно, кто побеждает в холодной войне. Интересно, что после того как Советский Союз развалился, активность радиопередач только выросла.

Ныне передачи ведутся из нескольких мест — разные источники называют разное их количество. (Например, называются передатчики в Наро-Фоминске, ПДРЦ 69 узла связи и в Керро Ленинградской области, ПДРЦ 60 узла связи. Есть также данные, что центры вещания находятся в Воронеже, Пскове и в поселке Бугры Ленинградской области. — Прим. переводчика.)

Естественно, нет недостатка в разных версиях и теориях, пытающихся объяснить, для чего нужна «Жужжалка». Их рамки простираются от переговоров с атомными субмаринами до общения с инопланетянами.

Одна из идей такова: это так называемая «рука мертвеца» (или «мертвая рука»). Если по России будет нанесен ядерный удар, сигналы прекратятся, и это сыграет роль спускового крючка для ответного удара.

В результате в живых не останется никто по обе стороны Атлантического океана.

Как бы безумно это ни звучало, в таком объяснении содержится разумное зерно.

Эта компьютерная система была создана еще при советской власти — для сканирования эфира и поисков признаков жизни при чрезвычайных ситуациях или в случае ядерного удара. Многие эксперты считают, что она действует и сейчас.

(В 2011 году в интервью газете «Комсомольская правда» командующий РВСН генерал-лейтенант Сергей Каракаев заявил, что система «Периметр» и сегодня существует, «она на боевом дежурстве». Система «Периметр» — или, как ее назвали на Западе, «Мертвая рука» — была создана в СССР для гарантированного доведения боевых приказов от высших звеньев управления до командных пунктов и отдельных пусковых установок стратегических ракет, стоящих на боевом дежурстве, в случае чрезвычайного положения, когда линии связи могут быть повреждены. — Прим. переводчика.)

Автор фото, iStock

Подпись к фото,

Стоит ли «Жужжалка» на боевом дежурстве? Или просто ожидает своего часа?

Как сказал в начале этого года российский президент Владимир Путин, никто не выживет в случае ядерной войны между Россией и США. Может быть, «Жужжалка» имеет к этому отношение?

Кое-какие выводы можно сделать из самого сигнала. Как и все международные радиостанции, «Жужжалка» вещает на коротких волнах, которые, в отличие от длинных и средних волн, путешествующих по прямой, отражаются от ионосферы и поверхности Земли с малыми потерями и могут распространяться на большие расстояния.

Именно короткие волны позволяют слушать Всемирную службу Би-би-си в Африке или Сингапуре. Но попробуйте поймать лондонское радио Би-би-си где-нибудь в Бирмингеме — скорее всего, у вас ничего не получится, потому что это FM, радиоволны другого диапазона, которые не путешествуют так далеко…

Автор фото, Public Domain/US DoD

Подпись к фото,

Если система «Мертвая рука» перестанет слышать сигналы от своего командования, она автоматически нанесет ответный ядерный удар

И тут мы возвращаемся к «руке мертвеца». Короткие волны используются морскими судами, самолетами и военными, чтобы посылать сигналы через континенты, океаны и горные хребты. Однако есть одно «но».

Качество приема зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Например, днем лучше распространяются волны меньшей длины, а ночью — большей, и так далее.

Если вы хотите гарантий, что вашу радиостанцию услышат на обратной стороне планеты (или если вы планируете использовать ее сигналы в случае ядерной войны!), вам необходимо в течение суток время от времени менять частоту.

Именно так делает Всемирная служба Би-би-си. Но этого не делает «Жужжалка».

Другая теория: эта станция посылает сигналы, чтобы выяснить, как далеко находится слой заряженных частиц. «Чтобы радарные системы по обнаружению крылатых ракет работали успешно, вам надо это знать», — подчеркивает Стапплз.

Увы, тут тоже не сходится. Чтобы проанализировать высоту слоя, сигнал должен обладать вполне определенным звуком, напоминающим автосигнализацию. Ничего похожего на «Жужжалку».

Интересно, что была еще одна станция, на удивление похожая на Buzzer. «Lincolnshire Poacher» («Браконьер из Линкольншира») работала с середины 1970-х по 2008-й.

Точно так же как и «Жужжалку», ее можно было слушать везде — хоть на противоположной стороне планеты.

Точно так же как и «Жужжалка», она вещала из неустановленного места, вроде бы где-то на Кипре.

Как и у «Жужжалки», то, что передавал в эфир «Браконьер», звучало странно и жутковато.

В начале каждого часа эта станция проигрывала первые два такта английской народной песенки, которая так и называется: «Браконьер из Линкольншира»:

«Oh ’tis my delight on a shining night

In the season of the year

When I was bound apprentice in famous Lincolnshire

‘Twas well I served my master for nigh on seven years…»

Сыграв один и тот же двухтактовый отрывок 12 раз подряд, радиостанция переходила к посланиям, которые зачитывались бесплотным женским голосом с выговором высшего английского сословия и содержали группы из пяти цифр: «1-2-0-3-6″…

Чтобы хотя бы немного понять, что все это значит, надо вернуться еще дальше в прошлое, в 1920-е. Компания АРКОС (ARCOS), Всероссийское кооперативное акционерное общество, была советской хозяйственной организацией, зарегистрированной в Великобритании и созданной для ведения торговли между РСФСР и Англией. По крайней мере, они так говорили.

Автор фото, Getty Images

Подпись к фото,

После лондонских обысков в АРКОСе русские перешли на иную систему передачи заданий своим шпионам на Западе

В мае 1927 года английская полиция пришла в штаб-квартиру АРКОСа в Лондоне с обыском, пытаясь найти документы, подтверждающие шпионскую деятельность некоторых сотрудников этой компании.

Подвальное помещение, которое они обыскивали, было утыкано всевозможными защитными приспособлениями. В итоге они обнаружили дверь без ручки, ведущую в потайную комнату, где сотрудники впопыхах жгли некие документы.

Выглядело это всё впечатляюще, но полиция не нашла ничего, чего бы британцы уже не знали о деятельности АРКОСа.

Тот обыск (который в советской пропаганде назвали налетом — Прим. переводчика) оказался более полезен для советской разведки, которая неожиданно обнаружила, что МИ5 уже несколько лет прослушивает так называемое «всероссийское кооперативное акционерное общество».

Чтобы подтвердить необходимость того обыска, британский премьер даже зачитал в Палате общин несколько перехваченных и расшифрованных телеграмм.

Итогом громкой истории стало то, что русские полностью сменили способ шифрования посланий. Почти сразу они перешли на систему одноразовых таблиц.

В этой системе ключ генерировался посылающим случайным образом и передавался только получающему. При таком методе послания становились практически нерасшифруемыми. Русские могли не бояться, что кто-то их прослушивает.

Автор фото, iStock

Подпись к фото,

Каждый, кто хоть когда-либо прочесывал короткие волны, натыкался на эти странные радиопередачи: мужчина или женщина, зачитывающие ряды цифр бесстрастным голосом…

И тут на сцену выходят коротковолновые номерные (числовые) радиостанции, передающие в эфир кодированные сообщения, состоящие из ряда цифр, как считается — для разведчиков, работающих в зарубежных странах.

Британия тоже делала это. Правда, сгенерировать абсолютно случайный ряд цифр оказалось непросто, поэтому в Лондоне придумали гениальное решение.

Они вывешивали за окно микрофон и записывали уличный шум Оксфорд-стрит: звуки сигналящих автобусов, крики полицейского — всё то, что было совершенно уникальным и не повторялось в таком же порядке никогда. После этого они переводили записанное в одноразовый код.

Всё это, конечно, не останавливало тех, кто пытался расшифровать подобные сообщения. Во время Второй мировой британцы поняли: чтобы взломать советский код, надо как-то добраться до одноразовых таблиц русских.

«Мы вдруг обнаружили, что в своих военных госпиталях в Восточной Германии русские используют в качестве туалетной бумаги листочки с устаревшими разовыми таблицами для шифрования», — рассказывает Энтони Глис, руководитель Центра изучения проблем безопасности и разведки при Букингемском университете.

С того дня солдатские уборные в ГДР попали в число приоритетных объектов для британских агентов.

Номерные радиостанции как новый способ передачи информации зарекомендовали себя столь хорошо, что вскоре вещали по всему миру. Им давали милые имена: «Нэнси Адам Сюзан», «Русский считающий мужчина», «Спелая вишенка»…

Номерная станция фигурировала и в крупнейшем шпионском скандале последних лет, когда ФБР арестовало на территории США 11 «законсервированных» агентов-нелегалов, внедренных, как предполагается, российской Службой внешней разведки (среди которых была Анна Чапман, если вы забыли о подробностях того дела — Ред.).

Так вот, по словам ФБР, агенты получали распоряжения из Москвы через кодированные послания, передаваемые на коротких волнах номерной станцией на частоте 7887 кГц.

Автор фото, Getty Images

Подпись к фото,

Считается, что сообщения, зашифрованные с помощью одноразовых таблиц, невозможно взломать

Теперь и Северная Корея этим занимается. 14 апреля 2017 года ведущий Радио Пхеньяна выдал в эфире нечто косноязычное и плохо замаскированное: «Даю обзорные работы на уроках элементарной информационной технологии в университете дистанционного образования для экспедиторов № 27».

После этого были переданы номера и страницы («номер 69 на странице 823», «страница 957»), что выглядело как закодированное сообщение.

Кого-то, возможно, удивит, что номерные станции до сих пор применяются в эру интернета и высоких технологий, но у них есть одно очень важное преимущество.

Можно догадываться, кто передает эти сообщения, но совершенно невозможно понять, кому они посланы — ведь слушать их может каждый.

Наверное, по мобильному телефону или через интернет было бы быстрее и удобнее, но для спецслужб установить, кто именно открыл то или иное электронное сообщение, — легче легкого.

Соблазнительно, конечно, прийти к выводу, что «Жужжалка» передает распоряжения российским шпионам по всему миру.

Есть только одна проблема: Buzzer никогда не передает длинных рядов цифр. (Вообще-то «Жужжалка» передает смесь цифр и русских слов — только, возможно, не в том объеме, чтобы можно было принять это за послание агенту за рубежом — Ред.)

Автор фото, Getty Images

Подпись к фото,

Во время холодной войны советские шпионы получали распоряжения по коротким волнам (на снимке — Рихард Зорге)

Так о чем же жужжит «Жужжалка»? Многие считают, что эта радиостанция — своего рода гибрид. Постоянный жужжащий звук — это просто маркер, который как бы говорит: «это моя частота, это моя частота…», давая понять, что частота занята, и не позволяя кому-то еще ее использовать.

И только в момент кризиса (предположим, когда на Россию кто-то напал) «Жужжалка» превратится в номерную станцию.

Вот тогда она будет передавать распоряжения — как шпионской сети по всему миру, так и воинским подразделениям, которые несут боевое дежурство в отдаленных уголках страны (территория России примерно в 70 раз больше территории Великобритании).

Похоже, что «Жужжалку» уже тестируют для этих целей.

«В 2013 году они передали нечто особенное: «МДЖБ ОБЪЯВЛЕНА КОМАНДА 135 (учебная тревога)», что можно рассматривать как тестовый сигнал к полной боеготовности», — говорит Марис Голдманис, радиолюбитель из Прибалтики, который постоянно мониторит станцию.

Возможно, в этом — разгадка тайны «Жужжалки». И если это правда, то остается лишь надеяться, что ее жужжание никогда не прекратится.

Прочитать оригинал этой статьи на английском языке можно на сайте BBC Future.

лечение, симптомы, диагностика опухоли — клиника ЛИСОД в Киеве, Украине

В клетках наиболее агрессивной опухоли головного мозга выявили фермент, который и обуславливает ее агрессивность. Сегодня ведутся работы над тем, чтобы заблокировать клеточные рецепторы к этому ферменту, что позволит существенно затормозить развитие и рост опухоли.

Читать полностью

Ученые обнаружили, что вакцина от полиомиелита может предупредить рецидив глиобластомы – злокачественной опухоли головного мозга. Эта вакцина является модифицированной (измененной) формой вируса полиомиелита. Она смертельна для раковой клетки и абсолютно безвредна для здоровых клеток. Введенная непосредственно в опухоль вакцина стимулирует иммунную систему организма для выработки естественных иммунных клеток-киллеров, атакующих опухоль. Этот метод действенный еще и потому, что нет необходимости преодолевать гематоэнцефалический барьер (естественный защитный барьер между мозгом и кровеносной системой). Когда метод будет полностью отработан, откроются новые возможности, и лечение рака головного мозга станет более эффективным.

Скрыть

Опухоль головного мозга значительно отличается от других новообразований. Эти отличия состоят в гистогенезе, клинических проявлениях, возможностях лечения. Специфичность опухолей головного мозга определяет наличие гематоэнцефалического барьера. Гематоэнцефалический барьер ограничивает проникновение многих веществ (в том числе, и лекарственных) из кровеносного русла в ткань мозга. Опухоль головного мозга может встречаться в любом возрасте. Злокачественные астроцитарные опухоли, такие как анапластическая астроцитома и мультиформная глиобластома, составляют около 60% всех образований головного мозга и относятся к злокачественным глиомам. Астроцитома  располагается обычно в белом веществе головного мозга. Рак головного мозга встречается относительно редко – около 1,5 % среди всех видов опухолей.

Диагностика

Основанием для предположительного диагноза опухоли мозга и направления больного на консультацию к онкологу являются появление и прогрессивное нарастание выраженности тех или иных неврологических симптомов. В LISOD применяют современные методы диагностики опухолей мозга.

Неинвазивные методы

  • Неврологическое исследование.
  • Патопсихологическое исследование.
  • Нейроофтальмологическое исследование.
  • Отоневрологическое исследование.
  • Компьютерная томография.
  • Эхоэнцефалография (ультразвук).
  • Электроэнцефалография.

Инвазивные методы

  • Исследование ликвора: давление ликвора, содержание белка в ликворе, цитологическое исследование, цитоскопия ликвора, исследование ликвора на предмет активности В- глюкуронидазы, исследование изоферментного состава ликвора.
  • КТ с внутривенным контрастированием
  • Эндоскопическое исследование (вентрикулоскопия + операции)
  • Иммуногистохимическая диагностика
  • Пункционная биопсия непосредственно перед операцией для окончательного уточнения диагноза.

Лечение

Полную информацию о диагностике и лечении этого вида рака Вам предоставят консультанты Информационной службы LISOD:

  • 0-800-500-110 (бесплатно для звонков
    со стационарных телефонов по Украине)
  • или +38 044 520 94 00 – ежедневно
    с 08:00 до 20:00.  

Лечение опухолей головного мозга является одной из наиболее сложных задач. Глиомы лечатся хирургическим удалением, постоперационной лучевой терапией и применением различных схем химиотерапии. Анапластическая астроцитома и мультиформная глиобластома отличаются значительно большей радио- и химиорезистентностью по сравнению с другими опухолями.

Значение хирургического вмешательства переоценить сложно, однако не всегда есть возможность его осуществить. Ввиду отсутствия четких границ между опухолью и мозговым веществом макроскопически полное удаление злокачественных опухолей можно выполнить с помощью уточненной предоперационной диагностики их распространения и расположения с использованием современных методов диагностики (КТ, АГ, предоперационное окрашивание опухоли).

Эффективность лечения большинства злокачественных опухолей головного мозга достигается за счет комбинированного хирургического, лучевого (лучевая терапия опухолей головного мозга) и химиотерапевтического (химиотерапия опухолей головного мозга) методов лечения. При некоторых опухолях основными методами лечения являются облучение головного мозга или химиотерапия опухолей головного мозга. Метастатические опухоли головного мозга – злокачественные новообразования, которые формируются в раковых клетках, возникающих в различных областях или органах тела. Такие онкологические заболевания, как рак легкого, молочной железы, рак кожи и почек являются наиболее частой причиной метастатических опухолей головного мозга. Лечение метастазов головного мозга проходит по правилам лечения того вида рака, который эти метастазы и породил.

Симптомы

В зависимости от локализации опухоли мозга и ее размеров рак головного мозга может давать самые разнообразные симптомы. Клинические проявления опухолей головного мозга обычно усиливаются с развитием заболевания. Это может выражаться в нарастании очаговых, общемозговых и общесоматических симптомов. Если опухоль мозга доброкачественная, заболевание развивается обычно постепенно, медленно и мягко на протяжении нескольких лет. Развитие опухоли мозга может протекать скрыто длительное время, с периодическими обострениями клинических проявлений. При злокачественных опухолях заболевание обычно начинается остро, иногда инсультообразно, наподобие сосудистого заболевания головного мозга или инфекционного вирусного менинго-энцефалита.

Головная боль является одним из основных, частых и ранних общемозговых симптомов развивающихся опухолей. Характер головной боли может зависеть от локализации опухоли и ее гистоструктуры.

Как общемозговой симптом рвота встречается часто и имеет ряд характерных черт: внезапный, рефлекторный, фонтанирующий характер. Возникновение рвоты не зависит от приема пищи, бывает часто натощак и без предварительной тошноты, отрыжки и болей в животе.

Головокружение наступает под влиянием острого повышения внутричерепного и ликворного давления. Обычно головокружение сопровождается шумом в ушах, снижением слуха, а также головной болью, рвотой.

Психические симптомы возникают постепенно вместе с другими общемозговыми симптомами в результате нарастающего повышения внутричерепного давления, расстройства крово- и лимфообращения, гипоксии, отека мозга и дистрофии клеточных структур коры больших полушарий. Интоксикация также может вызывать психические симптомы. Наиболее типичные расстройства психики: оглушенность, ослабление внимания, притупление восприятия и памяти, замедление ассоциативных процессов, снижение критического отношения к себе, к своей болезни и окружающим, общая вялость, безучастность, безынициативность.

Существуют также психические синдромы, которые имеют топикодиагностическое значение.

При опухолях лобной доли:

  • общая вялость, инертность, безынициативность, апатия, снижение памяти и интеллекта;
  • психическое возбуждение, агрессивность, которые сменяются благодушием и эйфорией;
  • легкомысленность, некритичность, странности в поведении, неопрятность с мочой и калом.

При опухолях височной доли: обонятельные, вкусовые и слуховые галлюцинации.

При локализации опухоли на стыке височной и затылочной долей: зрительные галлюцинации.

При поражении теменной доли: боли в конечностях.

Менингеальные симптомы могут развиваться в результате повышения внутричерепного давления, а также вследствие местного воздействия на оболочки мозга. Эпилептический синдром часто возникает на ранних стадиях заболевания до появления внутричерепной гипертензии (в 36,7% случаев проявляется в первую очередь).

Факторы риска

К сожалению, до сих пор не известны причины возникновения опухолей мозга. Большая вероятность, по мнению многих исследователей, может быть отдана черепно-мозговой травме, наследственности и неблагоприятному влиянию окружающей среды.

Вопросы и ответы

В разделе публикуются вопросы пациентов и ответы наших специалистов. Вопрос каждого человека касается конкретной проблемы, связанной с его заболеванием. Пациентам отвечают израильские клинические онкологи и главный врач LISOD, д.м. н., профессор Алла Винницкая.

Ответы специалистов основаны на знаниях принципов доказательной медицины и профессиональном опыте. Ответы соответствуют исключительно предоставленным сведениям, имеют ознакомительный характер и не являются врачебной рекомендацией.

Основная цель раздела – дать информацию пациенту и его семье, чтобы вместе с лечащим врачом принять решение о виде лечения. Предложенная Вам тактика лечения может отличаться от принципов, изложенных в ответах наших специалистов. Не стесняйтесь задать лечащему врачу вопрос о причинах отличий.  Вы должны быть уверены, что получаете правильное лечение.

Добрый день, доктор! Помогите! Брату 25 лет сделали операцию в 2011 году по удалению протоплазматической астроцитомы левой височной доли головного мозга. Выписали с заключением: Ликворно-гипертенвионный, судорожный синдром. Правосторонняя пирамидная недостаточность. Делаем повторное МРТ ежегодно наблюдается изменение опухоли, признаки продолжения роста образования левой лобно-высочной области, отрицательная динамика с 2013 в сторону появления кисты в лобной области слева. Судорожные и приступы рвоты не прекращаются. Принимает карбомазепин по назначению доктора. Какие Вы можете дать прогнозы? Мы в растерянности не знаем что делать и как поступить. Спасибо огромное!

Следует проконсультироваться с нейрохирургами по вопросу повторного оперативного вмешательства (даже частичного удаления при выраженном т.н. масс-эффекте) и после гистологического исследования решить о необходимости дополнительного онкологического лечения (лучевая, химиотерапия или их сочетание). Если операция в принципе невозможна, следует провести стереотактическую биопсию опухоли (она, как правило, меняет свою природу со временем – становится более агрессивной) и затем решать вопрос о виде лечения.

Здравствуйте, сможет ли ваша клиника нам помочь? Моему мужу 28 лет. У него опухоль в головном мозге, диагноз следующий: многоузловая внутримозговая глиальная опухоль с распространением в хиазмально-селлярною область, паравентрикулярно с двух сторон, атрофия зрительных нервов. Сам он болеет уже 2 года несахарным диабетом. Два месяца назад у него начались такие симптомы: ухудшение зрения, нарушение памяти и координации, боли в спине и ногах. У нас в больнице мы сделали МРТ, заключение: На серии полученных МР-томограмм в сагиттальной, аксиальной и коронарной проекции в Т1ВИ режиме в супраселлярной области определяется объемное образование размерами 39х32х32 мм, неравномерно интенсивно накапливающее парамагнетик, прорастающее в третий и боковые желудочки. Желудочки мозга и подпаутинные пространства расширены. Желудочки мозга неравномерно деформированы. Срединные структуры не смещены. Что нужно делать? Благодарю!

Основной метод лечения подобных опухолей — хирургический, с последующим решением вопроса о необходимости лучевой терапии или лучевой терапии совмещенной с химотерапией в соответствии с гистологическим диагнозом и объемом оперативного вмешательства.
Если случай признан неоперабельным — проводится биопсия (предпочтительно — стереотактическая) с последующим решением решением о консервативной терапии (лучевая +/- химиотерапия).

Здравствуйте, доктор! Моему брату (27 лет) удалили в Одессе опухоль головного мозга. Сначала говорили, что она доброкачественная, после гистологии оказалась мультиформная глиобластома. Подскажите, какие прогнозы и что в данном случае можно сделать? Спасибо!

Следует провести ревизию гистологических препаратов (в таком возрасте глиобластома — достаточно редкое заболевание) и решить о необходимости профилактического лечения ( лучевая терапия +/- химиотерапия либо одна из двух опций).

Здравствуйте! Женщине 67 лет. С ней случился инсульт неделю назад. На данный момент находится в больнице. Состояние плохое. МРТ: объемное поражение височно-лобно -теменной области слева (глиобластома?) с признаками правосторонней латеральной и аксиальной дислокации срединных структур и компрессией левого бокового желудочка, дифференцировать с внутримозговой гематомой в стадии обратного развития. Отек вещества мозга левой гемисферы. Остеохондроз С4-5, С5-6, С6-7 дисков ШОП. Доктор сказал, что в мозгу три очага метастаз. Предполагают распространение метастаз еще в организме. И тем не менее предлагают оперировать. Спасет ли это больную. Готовы от Вас услышать любой вариант ответа.

Первичные опухоли головного мозга, а глиобластома – это первичная опухоль мозга, как правило не дают метастазов в другие органы. Они, правда, могут быть мультицентрическими (несколько отдельных очагов), что иногда затрудняет дифференциальную диагностику первичных опухолей мозга и метастазов в мозг опухолей других органов. Оптимальная диагностика — это биопсия и гистологическое исследование, а если это не возможно (по различным причинам),- в некоторых случаях может помочь МРТ с контрастированием. Оперируются как первичные опухоли мозга таки метастатические. В первом случае — это основной метод лечения (в зависимости от типа опухоли в последующем проводится лучевая +/- химиотерапия), во втором – операция показана при больших, оказывающих объемный эффект, метастазах, как правило, единичных при хорошем общем состоянии пациента и ожидаемой выживаемости более 3-4 месяцев. В зависимости от размеров и локализации метастазов также может быть эффективна так называемая стереотактическая лучевая терапия (точное, прицельное облучение метастаза в большой дозе в один-три приема) которая уже доступна и в Украине.

Добрый день, доктор! Помогите! Диагноз — анапластическая астроцитома в правой гемосфере, в 2010 году проведена лучевая терапия в Израиле, динамика была отличная. Размер уменшился с 7-8 мм до 3мм. В феврале 2013 года удалили вновь выросшую опухоль. МРТ от июля 2013 показало отрицательную динамику. Какой Ваш совет?

Возможно взвесить стереотактическую реиррадиацию опухоли (на аппарате Кибер-нож или Гамма-нож) и, если речь идет об анапластической астроцитоме, возможна также химиотерапия Темодалом.

Здравствуйте! Моей маме (63 года) 21.03.2013 сделали операцию по удалению опухоли головного мозга. Диагноз — глиобластома 4 стадии. После операции произошел неврологический дефицит правых конечностей. Возможно ли дальнейшее лечение химией? На сколько можно продлить жизнь при таком диагнозе? Спасибо за ответ.

Стандартным лечением после проведенной операции по удалению глиобластомы, является лучевая терапия совместно с химиотерапией Темодалом. Средняя двухлетняя выживаемость всей этой группы больных составляет около 20-25%.

Здравствуйте! У моего дяди МРТ показало опухоль примерно 3 на 2,5 см в левой височно-теменной области. У него наблюдалось онемение правой руки и ноги, головные боли и потеря сознания два раза. На консультации в НИИ нейрохирургии отказали в операции из-за расположения опухоли в глубинных слоях мозга, рекомендовали сделать биопсию. Помогите, пожалуйста, с приблизительным прогнозом, поскольку дядя не верит в излечении, а боится, что лечение возможно принесет даже ухудшение состояния. Какова статистика выживаемости с таким диагнозом? Каковы варианты лечения могут назначить после биопсии и принесёт ли вообще лечение какие-то результаты. Заранее спасибо за ответ!

Диагноза-то, к сожалению, и нет. По приведенным данным ничего сказать невозможно. Необходима стереотактическая биоспия опухоли, после чего можно будет говорить о тактике лечения и прогнозе.

Добрий день! Моїй мамі зробили КТ (вік 49 років — втрата зору на ліве око), на якій наймовірніше виявлена доброякісна менінгіома. Результати обстеження: Об’ємний утвір ГМ (найімовірніше менінгеома). Знаходиться у складному місці для оперування. Найімовірніше вона доброякісна. Чи є якісь можливості зупинки росту пухлини, або ж можливості із застосуванням радіохірургії (променева терапія)?

Применение радиохирургии по эффективности сопоставимо с результатами хирургического удаление менингиомы и широко используется в практике. При невозможности, по разным причинам (включая экономические) использовать этот вид облучения («Кибернож», «Гамманож»), возможно применить и конформальную трехмерную фракционированную радиотерапию – это, в отличии от первого, длительное ежедневное лечение и поля несколько больше, но эффект практически тот же.

Доктор, добрый день! Мужу сделали операцию по удалению глиобластомы в декабре 2011. В феврале 2011 проведена лучевая терапия 60 Грей и два цикла химиотерапии (первая — препаратом Темодал 1800мг, вторая препаратом Темонат 1800мг). Через 7 месяцев провели компьютерную томографию и обнаружили опухоль такой же величины в том же части, что и до операции. Предлагают опять хирургическое вмешательство. Что делать? Нужно ли после операции опять проходить облучение и химиотерапию? Сколько раз опухоль может появляться еще?

Рецидивы (возврат) глиобластом одна из основных их биологических особенностей и хорошо известна. Повторное вмешательство предпочтительно (если оно возможно без значительных функциональных последствий). Затем возобновить химиотерапию Темозоламидом. Повторное облучение с учетом полученной дозы, сроков проведенного лечения и возможных осложнений, менее приемлемая опция. Надо понимать, что все это не гарантирует отсутствие очередного рецидива в дальнейшем.

Балетная труппа Большого театра

Биография

В 2005 г. окончила Московскую государственную академию хореографии (педагог Елена Боброва) и была принята в мимический ансамбль Большого театра. В 2012 г. перешла в балетную труппу Большого театра.

В 2008 г. приняла участие в исполнении хореографической сюиты «Белый шум» («Взаимодействия») на музыку В. Полторацкого (хореография А. Балуковой), премьера которой состоялась в рамках проекта Большого «Мастерская новой хореографии».

Репертуар

2012
испанский танец, Герцогиня
(«Дон Кихот» Л. Минкуса, хореография М. Петипа, А. Горского в редакции А. Фадеечева)
Мама («Мойдодыр» Е. Подгайца в постановке Ю. Смекалова) 2013
партия в балете «Весна священная» И. Стравинского
(постановка Т. Багановой)
Батильда («Жизель» А. Адана, хореография Ж. Коралли, Ж. Перро, М. Петипа в редакции В. Васильева)
Анна («Сильфида» Х.С. Левенскольда, хореография А. Бурнонвиля в редакции Й. Кобборга)
Ларина («Онегин» на музыку П. Чайковского, хореография Дж. Крэнко)

2014
Владетельная принцесса
(«Лебединое озеро» П. Чайковского во второй редакции Ю. Григоровича)
испанский танец, Сибилла де Дорис («Раймонда» А. Глазунова, хореография М. Петипа в редакции Ю. Григоровича)

2015
Г
ертруда («Гамлет» на музыку Д. Шостаковича в постановке Д. Доннеллана и Р. Поклитару)
медсестры (участница мировой премьеры балета), Мамаша Мери («Герой нашего времени» И. Демуцкого, часть «Княжна Мери», хореография Ю.Посохова, режиссер К. Серебренников)

2016
фанданго/ солистка
(«Дон Кихот»)
Герцогиня («Спящая красавица» П. Чайковского, хореография М. Петипа, в редакции Ю.Григоровича)
боярыни («Иван Грозный» на музыку С. Прокофьева, хореография Ю. Григоровича)
вальс/ танго («Золотой век» Д. Шостаковича, хореография Ю. Григоровича)
Колдунья Мэдж («Сильфида»)
овернский танец («Пламя Парижа» Б. Асафьева в постановке А. Ратманского с использованием хореографии В. Вайнонена)

2017
куртизанки
(«Спартак» А. Хачатуряна, хореография Ю. Григоровича)
Синьора Монтекки («Ромео и Джульетта» С. Прокофьева в постановке А. Ратманского) – первая исполнительница в Большом театре

2018
мазурка 
(«Коппелия» Л. Делиба, хореография М. Петипа и Э. Чекетти, постановка и новая хореографическая редакция С. Вихарева)
кариатиды («Дочь фараона» Ц. Пуни в постановке П. Лакотта по М. Петипа)
партия в балете «Артефакт-сюита» на музыку Э. Кроссман-Хехт и И.С. Баха (хореография У. Форсайта) – участница премьеры в Большом театре
купчихи («Петрушка» И. Стравинского в постановке Э. Клюга) – участница мировой премьеры

2019
фрейлины
(«Парижское веселье» на музыку Ж. Оффенбаха/ М. Розенталя, хореография М. Бежара) — участница премьеры в Большом театре

2020

болеро («Дон Кихот»)
Другая («Артефакт-сюита»)
Мария-Антуанетта («Пламя Парижа»)

Временной ряд

— что такое белый шум? Временной ряд

— Что такое белый шум? — Перекрестная проверка
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Cross Validated — это сайт вопросов и ответов для людей, интересующихся статистикой, машинным обучением, анализом данных, интеллектуальным анализом и визуализацией данных.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 102k раз

$ \ begingroup $

Как лучше всего определить процесс белого шума, чтобы он был интуитивно понятным и легким для понимания?

mpiktas

32.8k44 золотых знака8080 серебряных знаков137137 бронзовых знаков

Создан 10 фев.

user333user333

6,535311 золотых знаков4242 серебряных знака5353 бронзовых знака

$ \ endgroup $ $ \ begingroup $

Процесс белого шума — это случайный процесс некоррелированных случайных величин, имеющих нулевое среднее значение и конечную дисперсию.2 \ text {и} E (X (t) X (h)) = 0 \ text {for} t \ neq h \ text {.} $$ Немного более сильным условием является их независимость друг от друга; это «независимый процесс белого шума».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *